



# Update on Sparse CNNs for Particle ID in ProtoDUNE

Carlos Sarasty Segura 1st April 2020 DRA meeting



#### Outline

- Definition of the ground truth
- Training using 2D samples
- Training using 3D samples
- Summary



### Semantic Segmentation

 Goal: Apply sparse CNNs for the task of semantic segmentation at a pixel level in ProtoDUNE





#### Ground Truth - First Version

- Classify each pixel into 7 different classes for supervised learning
  - MIP → Two classes → muons & pions
  - HIP → Protons, kaons & nuclei
  - Showers → Induced by electromagnetic particles such as e-and e+
  - Michel electrons → From the decay of muons
  - Electromagnetic activity → Electrons from hard scattering, and low energy e<sup>-</sup>
  - Neutrons
  - Record the fraction of energy deposited by each class per pixel
  - https://indico.fnal.gov/event/20144/session/17/contribution/93/material/slides/0.pdf



#### Supervised Learning

- The dataset consist of about 100.000 2D image samples of up to 6000 px split into 95% and 5% for train and test respectively
- 1 feature → Integrated cargue





### Event Display Example





# Muon-Pion Separation



## ROC curve





### Moving to 3D

#### Ground truth:

- Modify the ground truth definition to separate kaons from the hip class.
- Merge neutrons & EM activity into 1 class

#### Features:

• Increase the number of features from 1 to 7 (3 coordinates per hit, integrated charge per plane per voxel, number of hits per voxel)

#### · Issues:

Low statistics for the kaon class → only 5% of files contain kaons



### Supervised Learning

 The dataset with kaons consist of 3943 3D images split into 95% and 5% for train and test





### Muon-Pion Separation







#### Second case

- Ground truth:
  - Merge kaons back in with protons into hip class
- Dataset: Consist of 70k 3D images





### Muon-Pion Separation







## Event display - True





# Event display - Predicted





#### TO DO:

- Modify the ground truth:
  - Include Delta rays as a separate class.
  - Separate electron and photon showers
- Retrain and test the model for electron and photon separation.



### Summary

- We have trained the network using different definitions of the ground truth and different datasets
- The performance of the network using 3D samples is significantly better than the 2D case
- A training using kaons as a separate class can be possible with a bigger dataset
- Comments and suggestions are more than welcome
- Thanks! :)



# Backup slides



- The first approach to distinguish the different classes of particles is based on the pdg and track ld information
- Geant4 also provides valuable information of the physical process of a simulated particle and its parent. This information is useful to characterize Michel electrons
  - Non-primary electron
  - Electron's parent is a muon
  - Same with positrons.

#### Neutrons

Check the process → n-capture, neutron Inelastic scattering



- EM showers and EM activity
- In the MC Truth the information of secondary and tertiary particles from showers is thrown away → shower
  daughters are tagged with the negative track ID of the parent particle
- Identify all particles that belong to the same track ID
- Set a threshold in the number of hits → nhits > 10 ~ 5cm
- Any other e<sup>+/-</sup> will be labeled as EM activity



#### **Drift Volume 1**





#### **Event display - True**

